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Abstract  17 

Analysts conducting stock assessments using integrated, age-structured models must discretize length 18 

data into a limited number of bins (data bins). Furthermore, some modeling frameworks also allow users 19 

to specify a distinct structure for how lengths of fish are represented in the model (model bins). The 20 

effect of choices regarding the number and width of these bins on model output is unclear, and these 21 

choices are made inconsistently in assessments across regions and species. Here, we used the Stock 22 

Synthesis modeling framework, and the ss3sim stock assessment simulation package, to explore the 23 

effects of choices about length discretization on stock assessment performance for three fish life-history 24 

types and four data cases. We found that, with all other aspects of a model fixed, increasing the model 25 

bin width tended to increase estimates of spawning biomass, but this effect depended on the shape of 26 

length-based processes (e.g., growth, maturity, and selectivity). Thus, we suggest analysts using model 27 

bins wider than 1 cm explore the effect of this decision on derived management quantities. In the context 28 

of estimation, there generally was a predictable tradeoff between estimation accuracy and model run 29 

time, with finer model and data bins always improving estimation accuracy and model convergence, but 30 

increasing run time. In some cases, wider data bins reduced run time (by up to 50%) with little sacrifice in 31 

model estimation performance, particularly those using conditional age-at-length data. This study 32 

identifies key aspects to consider when binning length, and provides pertinent information for stock 33 

assessment best practice guidelines.  34 



 

 

Keywords 35 

fisheries stock assessment; simulation testing; somatic growth; Stock Synthesis; ss3sim 36 

1 Introduction 37 

Integrated, age-structured fisheries stock assessment models are complex, powerful, and flexible tools for 38 

analyzing the status of a fish stock (Hilborn and Walters, 1992). However, this complexity often requires 39 

an analyst to make a variety of subjective biological, statistical, and modeling decisions, the effects of 40 

which are often poorly understood (Maunder and Piner, 2015). One such decision is how to discretize fish 41 

length measurements into ‘bins’ for analysis. In reality, growth is a continuous process, yet in assessment 42 

models, length data, and processes which depend on length, must be broken into discrete bins. Length 43 

bin specification is of central importance when constructing size-structured models (Drouineau et al., 44 

2008), but it also is important in age-structured models because many important biological and fishery 45 

processes are a function of length (e.g., growth, maturity, and selectivity). In addition, lengths, which are 46 

easier to measure than ages, are a common source of data used to inform estimates for key processes 47 

like growth.  48 

Within some types of age-structured stock assessment models, analysts must specify two distinct types of 49 

length bins. First are ‘data bins,’ which specify the resolution of the observed length data (e.g., length 50 

compositions). For example, length measurements from a fishery may be recorded to the nearest 1 cm, 51 

and bins must span the observed length range (i.e. 10 to 50 cm). Second are ‘model bins,’ which define 52 

the length dynamics within the model. For the same example, the model bins may need to range from 5 53 

to 100 cm to appropriately capture fish in the population that are too small to be selected by the gear, 54 

and larger fish which were previously available to fishermen. The choice of data bins is limited by the 55 



 

 

properties of the observed data, whereas the choice of model bins may be based on prior observations or 56 

may be a subjective decision. In many age-structured stock assessment modeling frameworks, the data 57 

and model bins match. The common bin width is decided upon based on the bins in which the length 58 

measurements are collected, or some aggregation subjectively chosen by the analyst. For cases where 59 

the data and model bins do not match, model bins need to be mapped to the data bins (typically via 60 

aggregation) to calculate the likelihood of the expected proportions at length, conditional upon the 61 

observed data. Distinct bin types are possible for any custom-built model, as well as the widely-used age-62 

structured population modeling framework Stock Synthesis (SS; Methot and Wetzel, 2013). Therefore, 63 

depending on the modeling framework, an analyst must decide the minimum length, maximum length, 64 

and bin width (together the ‘bin structure’), and whether to have distinct model and data bins.  65 

The choice of bins represents a tradeoff between model performance and accuracy. Increasingly fine 66 

model bins characterize length-based processes at a finer scale, but also increase computational 67 

requirements. Finer bins are therefore expected to increase accuracy, but may increase model run time 68 

(i.e., slower estimation). Conversely, increased bin width may reduce the accuracy of model estimates, 69 

but reduce model run time. Reducing model run time may free up time for analysts to conduct sensitivity 70 

tests or perform Bayesian analyses (e.g., Stewart et al., 2013). However, guidelines on best practices for 71 

binning strategies (i.e., setting the width and thus the number of bins) to balance this tradeoff are not 72 

readily available. Consequently, decisions are typically ad hoc and likely based on factors such as 73 

preferences from personal or colleague experience. A non-exhaustive survey of stock assessments from 74 

the U.S. West Coast, Gulf of Mexico, South Atlantic, mid-Atlantic, and Australia found a wide variety of bin 75 

widths were used in assessments, with little relation to maximum length or other life-history 76 

characteristics (Fig. 1). 77 



 

 

Szuwalski (2015) used simulation to explore the effects of increasing bin width on the precision and run 78 

time of a size-structured stock assessment model. He found biases in mature biomass and tradeoffs 79 

between precision, model stability, and run time, and recommended setting the bin width based on the 80 

goal of the analysis. Simulation testing has also been used to study age-structured stock assessment 81 

models for a wide range of topics, such as selectivity (Crone and Valero, 2014), steepness of the stock-82 

recruit relationship (Conn et al., 2010), the value of data (Ono et al., 2014), retrospective patterns 83 

(Hurtado-Ferro et al., 2014), and time-varying natural mortality (Johnson et al., 2014). Here, we explore 84 

tradeoffs between run time and accuracy of growth and management quantities with increasing length 85 

bin widths for three life histories and two types of data (age vs. conditional-age-at length) in an age-86 

structured stock assessment model. 87 

2 Materials and Methods 88 

2.1 Overview 89 

We generated true population and fishery dynamics from an operating model (OM), and then ran stock 90 

assessments via an estimation model (EM). The OMs and EMs were parameterized from actual 91 

assessments and modified to generate and assess simplified, but realistic, dynamics. Process and 92 

sampling error were added to the OM values to simulate variable dynamics and data collection. During 93 

model development, we verified that under base conditions (i.e., the same model structure between OM 94 

and EM and unbiased data sampling) the EM parameter estimates were unbiased. This ensured any 95 

observed bias was caused by the hypothesis under investigation. We then varied the data and model 96 

length bin structures in the EMs and investigated how these differences affected the precision and bias of 97 

estimated growth and management quantities. 98 



 

 

We conducted our analysis in R (version 3.2.2; R Core Team, 2015) using the stock assessment simulation 99 

framework ss3sim (Anderson et al., 2014a; Anderson et al., 2014b), which uses SS (version 3.24o; Methot 100 

and Wetzel, 2013) to both generate data and run the assessment. Cross-testing different modeling 101 

frameworks for simulation and estimation can provide useful insights (Deroba et al., 2014); however, we 102 

chose to use the same model framework (self-testing) because it allowed us to isolate the effects of the 103 

specific properties being varied (e.g., bin width). Following the reproducible and transparent philosophy 104 

of ss3sim, this simulation, consisting of the model configurations, results, and code to run and process the 105 

simulations, is available online and the analysis is reproducible using freely available tools (see Appendix A 106 

for details). 107 

2.2 Model Configurations 108 

2.2.1 Biological assumptions 109 

We chose three archetype stocks to represent a broad range of life histories (Table 1). The ‘cod’ model 110 

setup represents a life history with a medium life span, moderate growth rate, and low recruitment 111 

variability (derived from North Sea cod; Gadus morhua; R. Methot, NMFS, NOAA, pers. comm.). The 112 

‘rockfish’ model setup represents a life history with a long lifespan, low growth rate, and low recruitment 113 

variability (derived from yelloweye rockfish; Sebastes ruberrimus; Taylor and Wetzel, 2011). Finally, the 114 

‘flatfish’ model setup represents a life history with a medium lifespan, high growth rate, and moderate 115 

recruitment variability (derived from yellowtail flounder; Limanda ferruginea; R. Methot, pers. comm.). 116 

The OMs were parameterized with biological parameters estimated in their respective stock assessments 117 

(Table 2), whereas the dynamics of the simulated fisheries were simplified from their respective 118 

assessments (e.g., single sex and area) and standardized between species (see section 2.2.2). 119 



 

 

We modeled somatic growth for both the OM and EM using the specialized von Bertalanffy growth 120 

function (Schnute, 1981), as parameterized in SS: 121 

    1
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where L(a) is the mean length of fish at age a, and a1 is a young age that is well-represented in the data. 123 

SS also linearly interpolates the length of fish younger than a1, adjusts mean length within the plus group, 124 

and normally distributes lengths at each age around the mean length-at-age (see equations A.1.3-A.1.14 125 

in Methot and Wetzel, 2013). In this study, all five growth parameters were estimated in each EM: mean 126 

length at minimum age (Lmin), mean length at maximum age (parameterized to be L∞), Brody growth 127 

coefficient (k), and coefficients of variation for young and old fish (CVyoung and CVold). We considered only 128 

constant growth parameters, assuming no time variation, growth morphs, or platoons (i.e., growth 129 

classes; Goodyear, 1984).  130 

We assumed a Beverton-Holt stock-recruitment relationship, with steepness fixed at the true value in the 131 

EM, but estimated unfished recruits (R0). We also assumed independent and identically distributed 132 

annual recruitment deviations, with their magnitude based on the recruitment error estimated in the 133 

original models (Table 1), as the only source of process error. Natural mortality, the length-weight 134 

relationship, and maturity curves were all fixed in the EM at their true values (Table 2). 135 

We applied a procedure to correct for bias in estimated recruitment deviations that can arise in a 136 

penalized likelihood framework (Methot and Taylor, 2011). This iterative procedure is impractical to 137 

conduct for every model replicate in a simulation study, because it requires estimating and inverting a 138 

Hessian matrix, and then rerunning the model. Therefore, we used the same parameters for all replicates 139 

of a given scenario (unique combination of life history, data case, and bin-width case; see below). For 140 

each scenario we estimated bias adjustment parameters using 10 and 20 replicates in the data-rich and 141 



 

 

data-limited scenarios, respectively, and then used the average of those parameters for all replicates of 142 

that scenario.  143 

2.2.2 Fishery assumptions 144 

Model configurations included one fishery and one survey. We ran the OMs without fishing for 25 years 145 

as a ‘burn-in’ period for the cod and flatfish models, and used a 100 year burn-in period for the rockfish 146 

model due to its long lifespan. After the burn-in period, fishing was simulated for 75 years. We used an 147 

increasing and then decreasing exploitation pattern (i.e. 'two-way trip'; Magnusson and Hilborn, 2007), 148 

specified in terms of instantaneous F, rather than catch. The exploitation pattern was calculated as a 149 

function of the maximum sustainable yield (MSY) value for a given life history (Fig. 2d). Specifically, F 150 

increased linearly for 40 years to Fhigh, the value which led to catch at equilibrium of 0.9MSY (such that 151 

Fhigh > FMSY), and then decreased linearly for 35 years to Flow, the value which leads to equilibrium catch of 152 

0.9MSY (and Flow < FMSY). Previous studies using the ss3sim framework found little benefit in evaluating 153 

additional fishing patterns (Hurtado-Ferro et al., 2014; Johnson et al., 2014; Ono et al., 2014). 154 

The fishery selectivity curve matched the maturity curve (logistic), and was length based, time invariant, 155 

and estimated in the EM. Survey selectivity was shifted to the left of the fishery curve (i.e. smaller fish 156 

were selected in the survey), such that the length at which half of fish were selected in the survey was 157 

80% of what it was in the fishery. The survey catchability parameter (q) was fixed at 1 in the OM, but 158 

estimated in the EM. More details on the model configurations can be found in the model configuration 159 

files (Appendix A) and Table 2. 160 

2.2.3 Data quantity and quality 161 

We used four types of data: (1) an index of abundance from the survey, (2) length compositions from the 162 

survey and fishery, and either (3) age compositions or (4) conditional age-at-length (CAAL) compositions 163 



 

 

from the survey and fishery. CAAL composition data are created from paired age and length observations, 164 

and represent the age structure within a given length data bin (e.g., He et al., 2015). Using CAAL data, 165 

instead of both age and length compositions of the same sampled fish, is preferable because it avoids 166 

including the same data twice. CAAL data are expected to be more informative about growth than 167 

marginal age composition data (He et al., 2015; Methot, 2015), although to date few studies have 168 

examined this data type. 169 

Abundance indices were generated using a lognormal distribution. Age and length compositions were 170 

assumed to be independent and generated from a multinomial distribution. CAAL data were generated 171 

for a given fleet and year using the following procedure. First, we sampled from the expected length 172 

distribution with sample size Nlength to get the observed number of fish in each length bin Nlength,bin (the 173 

length compositions). Second, we assumed all fish were aged, and for each length bin took a multinomial 174 

sample of size Nlength,bin with probabilities set to the true distribution of ages, given the length bin. We 175 

repeated this procedure across all length bins, fleets, and years to construct an observed CAAL matrix. 176 

The CAAL data were inherently tied to the length compositions (e.g. as if a trip measured lengths and ages 177 

for all fish), in contrast to the age compositions which were generated independently of the length data 178 

(e.g. as if one trip measured only ages and a second only lengths). Index, length, age, and CAAL data were 179 

all unbiased, and the level of observation error was controlled by the sample sizes for compositions, or 180 

the standard deviation (in log space) for the index of abundance. We did not include ageing error in the 181 

models or data sampling, and EM samples sizes were fixed at the true effective sample size.  182 

We varied the quantity (number of years, number of samples) and type of age data (age composition or 183 

CAAL) to test the impact of binning across four hypothetical data cases (Fig. 2e). Since the length of burn-184 

in periods differed between life histories, we report years since the start of fishing. Our ‘rich’ case 185 

included fishery compositions (length, and age or CAAL) of 125 fish sampled in years 10, 20 to 45 every 5 186 



 

 

years, and then annually from 46 to 75. The survey operated every other year from year 50 to 75, with 187 

compositions samples of 500 fish and standard deviation of the log of the index of 0.2. Our ‘limited’ data 188 

case had fishery compositions of 20 fish sampled in year 60, and then annually from 65 to 75. The survey 189 

sampled every other year from 68 to 75, with compositions of 20 fish and standard deviation of the log of 190 

the index of 0.2. Both of these data cases included an index of abundance from the survey and length 191 

compositions, but we also varied whether there were age compositions (assumed independent of the 192 

length data) or CAAL data (dependent on the length data) to create a total of four data cases.  193 

2.3 Binning methods and strategies 194 

The OM and EMs for each life history were set up with identical model and data bin ranges (minimum and 195 

maximum lengths; Table 1). In all cases, the OM used 1 cm model and data bin widths, so that the 196 

models’ internal calculations and expected values mimicked a data collection procedure where lengths 197 

were grouped in 1 cm bins. We set the minimum bin well below the smallest observed fish, and we set 198 

the maximum bin large enough to contain more than 99.5% of fish if the population were in an unfished 199 

state, effectively eliminating the plus group. 200 

2.3.1 Structural impact of model bin widths 201 

Some properties and derived quantities of a model inherently depend on the model length bin structure 202 

used. In contrast, the data bin structure has no impact on these quantities, as it is only used in the 203 

calculation of the likelihood. Therefore, before testing the impact of data bin width in the estimation 204 

context, we investigated how the true MSY, annual spawning stock biomass (SSB), and recruitment 205 

changed with increasing model length bin widths. To explore this, we ran the OMs for model bin widths of 206 

1-20 cm without recruitment (process) variation, and estimation turned off (i.e., growth and other 207 

parameters fixed). Thus any differences in MSY, SSB, or recruitment were caused only by differences in 208 



 

 

the model bin structure. These results were used to help interpret the estimation accuracy in subsequent 209 

sections. We used the quantities from the 1 cm case (the highest resolution) as a baseline against which 210 

to compare wider bins used in this section. 211 

2.3.2 Tradeoffs of model speed and accuracy with increasing bin widths 212 

In this section, we explored the impact of data bin width on estimation. We used the same set of 213 

commonly used data bin widths (1, 2, 5, 10, and 20 cm) across all three life histories. Although stock 214 

assessments rarely use widths greater than 10 cm (Fig. 1), we included a 20 cm width to explore model 215 

performance beyond the typical range. The total number of bins for life-history types, for a given bin 216 

width, varied due to differences in maximum lengths (Table 3). For example, a 5 cm bin width would lead 217 

to many more bins for a large elasmobranch than it would for a small forage fish. An alternative 218 

experimental design would be to specify a set of bin width ratios (the ratio of bin width to asymptotic 219 

length) to standardize the resolution tested across life history types. However, this led to widths that 220 

were not integers or were unlikely to be used in practice (e.g., 13 cm). These bin widths also introduced 221 

technical difficulties, because CAAL data bins must align with the model bins, and we sought identical bin 222 

ranges to facilitate comparisons of model run time. Therefore, we chose to specify the widths above and 223 

note the bin width ratio for each life history (Table 3).  224 

In addition to varying the data bin widths, we also tested two cases for EM model bin widths (the ranges 225 

remained fixed). In the first case, we matched the model and data bin width, as if the option of a distinct 226 

model bin structure was not available. In the second case, we left the model bin width set at 1 cm and 227 

only varied the data bin width. The difference in performance of these two cases allowed us to 228 

differentiate the impact of the two types of bins, as well as quantify the advantage of separate model and 229 

data bin structures. 230 



 

 

2.4 Model convergence and performance 231 

Verifying model convergence, as is typically done with an actual assessment (e.g., by trying multiple 232 

starting values, or checking for an invertible Hessian), is impractical in the context of a simulation study 233 

with tens of thousands of model runs. During development of the simulation we found models with a 234 

maximum gradient less than 0.1 and no parameters stuck on their bounds consistently provided reliable 235 

results. Therefore, if a replicate of an EM failed to meet these conditions (or failed to converge at all) we 236 

considered it non-converged and excluded it from our results. We ran 200 replicates of each data-rich 237 

scenario and 400 for each data-limited scenario to account for the higher uncertainty and non-238 

convergence of the latter, and reported convergence rates by scenario. 239 

EM parameters were initialized at the true (OM) parameter values, with the exception of the recruitment 240 

deviations (intialized at zero), and R0 which was initialized at a higher value to help stabilize estimation, 241 

particularly for life histories with higher recruitment variability. Bounds were set wider than typically used 242 

(Table 2) and no priors were included on any parameters. 243 

We used relative error (   ( ̂   )  ) and median absolute relative error (           (| ̂  244 

 |  ) ) between OM ( ) and EM ( ̂) parameters and across replicates to quantify estimation 245 

performance (accuracy and precision). We focused on growth parameters, but also tracked two 246 

quantities of interest to management: spawning stock biomass at maximum sustainable yield (SSBMSY) and 247 

biomass in the last year relative to unfished biomass (‘depletion’). We also tracked the EM run time and 248 

number of iterations to convergence. 249 

3 Results 250 

3.1 Structural impact of model bins 251 



 

 

The magnitude and pattern of RE for quantities of interest from increasing model bin width in the OM 252 

(using the 1 cm model as baseline) varied between life-history type, with cod exhibiting the smallest 253 

effects and rockfish the largest (Fig. 3). Relative error in both SSBMSY and depletion oscillated with 254 

increasing model bin width, and was generally positive (Fig. 3a,c,e). We observed two patterns in annual 255 

SSB values across life histories (Fig. 3b,d,f). First, SSB always increased (positive RE) with increasing model 256 

bin width, with the increase being most pronounced between 10 and 20 cm model bin widths. Second, 257 

the annual changes in RE for SSB were highly variable among life histories. For example, with a 20 cm 258 

model bin width, the cod life history showed little change in RE, flatfish RE increased and then decreased, 259 

and rockfish RE only increased. 260 

3.2 Tradeoffs of model performance and speed 261 

Patterns were generally similar among the three life histories, so we only present results for the flatfish 262 

models in the main text. Figures for the rockfish and cod models can be found in the supplementary 263 

material (Appendix A; Figs. S1-S6).  264 

For the data-rich, age-composition scenario, estimates of management quantities and growth parameters 265 

were generally unbiased (Fig. 4a-g). The three exceptions were CVyoung, Lmin, and k with matching data and 266 

model bins of 5 cm and 10 cm. For example, median RE values were 6.8% for CVyoung, -20.5% for Lmin, and 267 

6.5% for k for 10 cm bin widths. Despite the biases in growth parameters, the management parameters 268 

were relatively unbiased, with median RE value of -1.7% for both SSBMSY and depletion. 269 

For the data-rich, CAAL scenario, estimates of management quantities and growth parameters were also 270 

generally unbiased with 1 cm model bins. However, the CAAL data scenarios tended to be more sensitive 271 

to increasing model bin widths, compared to the scenario with age compositions (Fig. 4h–n). For example, 272 

with 10 cm data and model bin widths, growth parameters were biased, and the median RE for SSBMSY 273 



 

 

was 20.3% and -16.1% for depletion, substantially higher than the -1.7% for both with age composition 274 

data. The most notable improvement seen by using CAAL data over age compositions, in the data-rich 275 

scenario, was in the reduced uncertainty of the growth parameters for 1 cm model and data bin widths, 276 

particularly the CV parameters and k.  277 

Compared to the data-rich scenarios, the data-limited scenarios generally had similar, but exaggerated, 278 

patterns with substantial bias and variability for all bin-width cases (Appendix A). Interpretation of the 279 

data-limited scenarios was further complicated by convergence issues (see below).  280 

The rate of convergence, defined here as a maximum gradient of less than 0.1 and no parameters on 281 

their bounds, declined as data bin widths increased (Fig. 5a-d). We found that nearly 100% of all data-rich 282 

scenarios with 1 cm model bins converged. Convergence rates for data-limited scenarios followed the 283 

same pattern, but were much lower than those from data-rich scenarios. For example, with data and 284 

model bins of 1 cm, the data-limited scenarios had convergence rates of 63.5% and 90.5% for age 285 

compositions and CAAL data, respectively. Models that failed to converge typically were stuck at the 286 

lower bounds of CVyoung or Lmin, or had a high gradient. We were unable to get reliable bias adjustment 287 

parameters for the scenario of 20 cm data and model bins with data rich CAAL for the flatfish life history, 288 

which prevented us from implementing this scenario. 289 

As expected, the run time per iteration consistently decreased as the data bin width increased (Fig. 5m-290 

p). Scenarios with matching model and data bin widths ran faster compared to those with 1 cm model 291 

bins (Fig. 5e-h). One notable exception, unique to the flatfish model in the data-rich CAAL scenario, was 292 

the substantial increase in iterations (and thus run time) as model bin width increased (Fig. 5j). Run times 293 

were on average 1.6 times longer for CAAL scenarios compared to age scenarios (range 0.9 to 2.8) for the 294 

data-rich scenarios (Appendix A). The pattern in run time for data-limited scenarios was not consistent 295 

across life histories, likely due to convergence issues.  296 



 

 

We found a consistent improvement in estimation with increased run time but only for data rich CAAL 297 

scenarios (Fig. 6). For example, by switching from 1 cm to 5 cm data bins in the data-rich, CAAL scenario, 298 

run time was less than half and with minimal change in estimated management quantities  299 

4 Discussion 300 

We tested the impact of length bin specification on model performance and accuracy of age-structured 301 

stock-assessment models, and conclude higher bin resolution improves performance, but increases 302 

model run time. The width of model bins was found to be particularly important, as both operating model 303 

behavior and estimation accuracy improved with finer model bins. Wider data bins introduced bias into 304 

growth parameter estimates, but did not substantially affect management quantity estimates. As a result, 305 

we recommend analysts use fine model bin widths, and determine the optimal tradeoff between better 306 

parameter estimation and increased run time when specifying data bin width. For models without the 307 

option of distinct model bins, we expect this tradeoff to occur faster, such that wider bins are less likely to 308 

be a good option.   309 

We caution analysts that increasing the model bin widths can inherently change model outputs, including 310 

important management quantities, even before data are included. This effect likely occurs because 311 

aggregating lengths into equally spaced bins is a linear transformation applied to inherently non-linear 312 

processes (e.g., selectivity, maturity, and growth). For example, the model assigns a weight to all fish in a 313 

length bin by using the length at the mid-point of the bin, even though weights within the bin are not 314 

uniform. Growth, maturity, and selectivity interact, and it is therefore difficult to predict how a model will 315 

change with increasing model bin widths. In this study, we found spawning biomass tended to increase 316 

with increasing model bin widths. This effect was more pronounced for life histories that are fully 317 

selected when they are well below their maximum size (e.g. cod) than slower-growing species (e.g., 318 



 

 

rockfish). However, we encourage analysts to explore the sensitivity of their models to increasing model 319 

bin widths, because the effect is difficult to predict, but straightforward to check. 320 

We found the best estimation performance (i.e., increased precision and accuracy of REs) resulted from 321 

the use of 1 cm model and data bin widths. This was not surprising as the discretization error is minimized 322 

with finer bins, and those estimation model configurations matched our generated truth from the 323 

operating models. However, there was a minimal loss of accuracy when model bin width was held at 1 cm 324 

and data bin width was increased to 5 or even 10 cm in some cases. This result suggests that reliable 325 

estimates may be possible, even when lengths are measured coarsely (e.g., visual surveys as in SEDAR, 326 

2005). This also validates the use of distinct model and data bin widths in SS, and suggests analysts 327 

building custom models strongly consider adding this feature. We recommend analysts use a fine 328 

resolution for model bins, regardless of the resolution of the data and assuming run time is not an 329 

obstacle. For example, if an analyst is given length-composition data in 5 cm bins, we advise they still use 330 

a 1 cm model bin width to maximize estimation accuracy.  331 

In some situations, decreasing run time may be particularly appealing. For instance, simulation testing 332 

(Deroba et al., 2014) and management strategy evaluations (Punt et al., 2014) can have tens of thousands 333 

model replicates, and Bayesian inference with the Markov chain Monte Carlo algorithm can have 334 

numerous iterations within a model (e.g. Stewart et al., 2013). Another situation where decreasing run 335 

time could be appealing may be with models that use CAAL data, because the data matrices are much 336 

larger than for marginal age composition data: Nage × Nlength × Nyear versus Nage × Nyear, where Nlength and 337 

Nage are the number of age and length bins and Nyear is the number of years of age data for a fleet. In 338 

these situations where run time is an obstacle, the tradeoff with performance may be more important to 339 

understand. For cases where run time decreased with increasing bin widths, the estimation of growth 340 

typically degraded, but management quantities often remained stable. We therefore encourage analysts 341 



 

 

to consider the goal of their model (management advice, simulation testing, etc.), and explore the effect 342 

of aggregating data into wider bins, or increasing model bin widths, for the purposes of reducing run 343 

time. 344 

As with any simulation study, we made a set of assumptions that should be considered when interpreting 345 

our results. For example, our model setups included a single fishery, sex, area, and source of process 346 

error. We also fixed parameters, such as steepness of the stock-recruit relationship and natural mortality, 347 

at their true values, which would be impossible in a real assessment. One particularly important 348 

assumption to highlight is that both age and length data were generated without measurement error (in 349 

the sense that fish were always assigned to the correct age or length bin). It is unclear how these two 350 

assumptions affected our results, and may be worth investigation in future studies. The simulated data 351 

were also unbiased with known effective sample sizes and had no outliers or other properties that 352 

conflict with the multinomial likelihood used (e.g., over-dispersed or dependent; Francis, 2014; Maunder, 353 

2011). Our approach of using simplified models and generating idealized data contrasts somewhat with 354 

other studies that used specific empirical assessments and the bootstrapping feature of SS (e.g., Crone 355 

and Valero, 2014). Studies which use this approach use more realistic models, but the results may be 356 

difficult to generalize to other stocks and systems. We also expect the results from our simplified models 357 

will apply to many custom-built age-structured models, and thus our conclusions are applicable beyond 358 

SS models. 359 

We see simulation testing of simplified biological and fishery systems as a vital first step to understanding 360 

how stock assessment models perform under more realistic conditions. Here, we outlined tradeoffs which 361 

are important for analysts to consider when binning length in age-structured stock assessment models. 362 

We show that specification of model and data length bins can affect estimates of management quantities 363 



 

 

and demographic parameters, suggesting analysts should carefully consider how length bins are specified 364 

when fitting stock assessment models. 365 

5 Appendix A 366 

Reproducible code, model configurations, results, and additional plots and tables are available at 367 

https://github.com/ss3sim/binning. 368 
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7 Tables  382 

Table 1. The three life-history operating model configurations, including minimum and maximum length 383 

bin (measured in cm), growth parameters, and the parameters natural mortality (M), steepness (h), and 384 

recruitment variability (σR).  385 

Life history Min Bin Max Bin  Lmin L∞ CVyoung CVold k M h σR 

Cod 10 190 20.0 132.0 0.10 0.10 0.20 0.20 0.65 0.40 

Flatfish 2 102 12.7 47.4 0.20 0.20 0.35 0.20 0.76 0.80 

Rockfish 10 110 18.0 62.0 0.13 0.13 0.05 0.08 0.44 0.50 

  386 



 

 

Table 2. Biological, fishery, and modelling parameters used for each life-history type. Lower and upper 387 

bounds are given in percentages of the true value from the OM, except for the CV and catchability 388 

parameters, which are absolute. 389 

Variable Name Symbol Flatfish Cod Rockfish Estimated Lower  Upper  

Natural mortality (year
-1

) M 0.20 0.20 0.08 No - - 

Minimum age (year) a1 0.5 1.0 1.0 - - - 

Maximum age (year) Amax 25 25 70 - - - 

Length at a1 (cm) Lmin 12.7 20.0 18.0 Yes 5 500 

Length at Amax (cm) L∞ 47.4 132.0 62.0 Yes 5 500 

Growth rate (year
-1

) k 0.347 0.200 0.047 Yes 5 500 

CV at Lmin (-) CVyoung 0.20 0.10 0.13 Yes 0.01 0.50 

CV at L∞ (-) CVold 0.20 0.10 0.13 Yes 0.01 0.50 

Length-weight scaling (kg cm) α 1.00E-05 6.80E-06 9.77E-06 No - - 

Allometric factor (-) β 3.00 3.10 3.17 No - - 

Maturity slope (cm
-1

) Ω1 -0.400 -0.276 -0.400 No - - 

Length at 50% maturity (cm) Ω2 28.90 38.18 38.78 No - - 

Log mean virgin recruits (-) ln R0 10.5 18.7 5.6 Yes 4 20 

Steepness (-) h 0.76 0.65 0.44 No - - 



 

 

Recruitment variability (-) σR 0.7 0.4 0.5 No - - 

Fishery length-at-50% 

selectivity (cm) 

S1 36.4 50.8 46.4 Yes 10 200 

Fishery length selectivity 

slope (cm) 

S2 4.3 5.1 4.2 Yes 0 500 

Survey length-at-50% 

selectivity (cm) 

S3 30.6 41.8 38.7 Yes 10 200 

Survey length selectivity 

slope (cm) 

S4 4.3 5.2 4.2 Yes 0 500 

Survey log-catchability ln q 0 0 0 Yes -20 20 

  390 



 

 

 391 

Table 3. Data bin-width cases for each life history in the estimating models. All operating models had 1 cm 392 

model and data bins. Bin width ratio is the length bin width divided by mean asymptotic length (L∞). 393 

    Number of bins Bin width ratio 

 

Bin width (cm) Cod Flatfish Rockfish Cod Flatfish Rockfish 

Base case 1 180 100 100 0.008 0.021 0.016 

Small 2 90 50 50 0.015 0.042 0.032 

Medium 5 36 20 20 0.038 0.105 0.081 

High 10 18 10 10 0.076 0.211 0.161 

Extreme 20 9 5 5 0.152 0.422 0.323 

  394 



 

 

8 Figures 395 

 396 

Fig. 1. Frequency of data length bin widths used by region (top panel) and by species grouping (bottom 397 

panel). Columns represent bin widths in cm, and cells contain counts with darker shading indicating 398 

higher counts. Results are from a non-exhaustive survey of Stock Synthesis models in the U.S. and 399 

Australia. 400 
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 402 

Fig. 2. Experimental design showing the life histories, fishing pattern, and data cases. (a–c) Growth 403 

functions are shown with their 95% confidence intervals (solid and dashed curved lines), while selectivity 404 

contours (length-based and matching maturity) are shown as shaded horizontal lines. Four bin-width 405 

cases (2, 5, 10, and 20 cm) are shown as columns of dashed lines on the left of each panel. The average 406 

fishery age and length distributions from a single replicate of the data-rich case are also shown as density 407 

plots on the respective axes. (d) The pattern of instantaneous fishing effort, relative to FMSY. (e) The data 408 

type and years for two data cases. Ages can either be compositions or conditional age-at-length. Sample 409 

sizes are given in the text. 410 



 

 

 411 

Fig. 3. The effect of internal model structure for variable model length bin widths in the operating model, 412 

while leaving parameters fixed and setting recruitment deviations to zero. Derived values such as 413 

management quantities, annual spawning biomass, and recruitment change because they depend on the 414 

internal fish length resolution. Relative error is calculated using the values from a 1 cm model as the base 415 

comparison. SSBMSY is spawning stock biomass at maximum sustainable yield and depletion is biomass in 416 

year 75 relative to unfished biomass. 417 
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 419 

Fig. 4. Relative error of estimates of management quantities and growth parameters for data-rich cases 420 

across data bin widths for the flatfish life history. Points and lines show the median and interquartile 421 

range. Shading is used to indicate whether the model bin width was held at 1 cm (black) or whether it 422 

matches the data bin width (gray). Scenarios with less than 50% convergence are not shown. Cases of 20 423 

cm bins are not shown for clarity. 424 
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 426 

Fig. 5. Performance metrics (rows) for the flatfish model for four data cases (columns) by data bin width. 427 

Convergence is defined as the maximum gradient less than 0.1 and no parameters stuck on their bounds. 428 

The run time, number of iterations, and run time per iteration (last three rows) are normalized by data 429 

case and are relative to a model with 1 cm model and data bins. 430 
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 432 

 433 

Fig. 6. Tradeoff between run time and relative error for the data-rich case for the flatfish model. Median 434 

run time and median relative error are shown for each data bin width for the case where the model bin 435 

was fixed at 1 cm. Relative run time is calculated relative to the slowest run time for each data type.  436 

Cases of 20 cm data bins are not shown for clarity. 437 
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